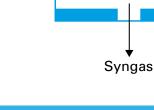
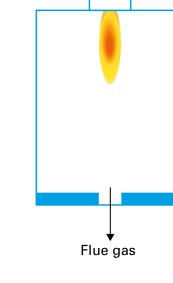

Methane pyrolysis, gasification and combustion

Natural gas or hydrogen fuel Natural gas

Oxygen




Notes:

- Shaded area denotes catalyst bed
- Energy for pyrolysis may be from combustion of fuel, or from an electric plasma arc
- Pyrolysis diagram shown is for catalytic pyrolysis

© 2021 sbh4 GmbH

	,				\			
					ļ			
		+			+		L	Flue gas
Ну	dro	∳	en	& C	↓ ar	bo	n	

1100633					
Oxygen feedstock					
Catalyst required					
Energy required / released					
Chemical reaction					
Carbon product					
Hydrogen content in product					
gas					
Product gas pressure					
Product gas temperature					

Pyrolysis (Methane splitting or cracking)

None, oxygen-free process

Yes (Carbon, Nickel or Iron) for catalytic, no for thermal and plasma Endothermic, requires heat input

CH₄ → C + 2H₂
Carbon black powder
100%

Atmospheric pressure 500 to 900 °C catalytic, 1100 to 1400 °C thermal, 1500 to 2000 °C plasma

Partial Oxidation – POX (Gasification)

Oxygen from ASU fed with controlled stoichiometry to limit CO₂ generation

No for thermal POX, yes for catalytic POX

Exothermic, steam generation $2CH_4 + O_2 \rightarrow 2CO + 4H_2$ (ideal case) CO and CO_2 from side reactions ~60%

40 to 80 bar ~ 1400 °C

Combustion (Thermal oxidation)

Air fed in excess to ensure full conversion to CO₂ (oxygen from ASU in Allam cycle)

No

Exothermic, ideal for steam generation $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ (ideal case) CO_2

Zero, complete oxidation to CO₂ & H₂O is ideal case

Atmospheric pressure ~1400 °C